A fast multipole method for Maxwell equations stable at all frequencies.

نویسندگان

  • Eric Darve
  • Pascal Havé
چکیده

The solution of Helmholtz and Maxwell equations by integral formulations (kernel in exp(i kr)/r) leads to large dense linear systems. Using direct solvers requires large computational costs in O(N(3)). Using iterative solvers, the computational cost is reduced to large matrix-vector products. The fast multipole method provides a fast numerical way to compute convolution integrals. Its application to Maxwell and Helmholtz equations was initiated by Rokhlin, based on a multipole expansion of the interaction kernel. A second version, proposed by Chew, is based on a plane-wave expansion of the kernel. We propose a third approach, the stable-plane-wave expansion, which has a lower computational expense than the multipole expansion and does not have the accuracy and stability problems of the plane-wave expansion. The computational complexity is Nlog N as with the other methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High order boundary integral methods for Maxwell’s equations using Mi- crolocal Discretization and Fast Multipole Methods

An efficient method to solve time harmonic Maxwell’s equations in exterior domain for high frequencies is obtained by using the integral formulation of Després combined with a coupling method (MLFMD) based on the Microlocal Discretization method (MD) and the Multi-Level Fast Multipole Method (MLFMM) [1]. In this paper, we consider curved finite elements of higher order in the MLFMD method. More...

متن کامل

Efficient fast multipole method for low-frequency scattering

The solution of the Helmholtz and Maxwell equations using integral formulations requires to solve large complex linear systems. A direct solution of those problems using a Gauss elimination is practical only for very small systems with few unknowns. The use of an iterative method such as GMRES can reduce the computational expense. Most of the expense is then computing large complex matrix vecto...

متن کامل

Combining the Ultra-Weak Variational Formulation and the Multilevel Fast Multipole Method

Because of its practical significance, many different methods have been developed for the solution of the time-harmonic Maxwell equations in an exterior domain at higher frequency. Often methods with complimentary strengths can be combined to obtain an even better method. In this paper we provide a numerical study of a method for coupling of the Ultra-Weak Variational Formulation (UWVF) of Maxw...

متن کامل

Integral Equations Methods: Fast Algorithms and Applications

Integral equations have long been an invaluable tool in the analysis of linear boundary value problems associated with the Laplace and Helmholtz equations, the equations of elasticity, the time-harmonic Maxwell equations, the Stokes equation, and many more. Numerical methods based on integral equations have become increasingly popular, due in large part to the development of associated fast alg...

متن کامل

Fast multipole method applied to 3D frequency domain elastodynamics

This article is concerned with the formulation and implementation of a fast multipoleaccelerated BEM for 3-D elastodynamics in the frequency domain, based on the so-called diagonal form for the expansion of the elastodynamic fundamental solution, a multi-level strategy. As usual with the FM-BEM, the linear system of BEM equations is solved by GMRES, and the matrix is never explicitly formed. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 362 1816  شماره 

صفحات  -

تاریخ انتشار 2004